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Drift-Free Magnetic Geometries

in Adiabati ¢ Motion

: David.P. Stern

Theoretlical Studies Group, Goddard Space Flight Center
Greenbelt, Maryland 20771

and

Peter Palmsdecso

Plesma Dynemics Branch, Naval Research Laboratory
Washington, D.C. 20390

Abstract

There exist megnetic fields in which particles bouncing between mirror
points experience no net first-order guiding center drift, In such fields,
even though the instentancous gradient and curvature drifts are not zero,
their total effect imtegrated over any bounce period.vanish?s, so that
particles merely wobble back and forth around fixed field lines, A class
- of two~dimensional drift-free fields, somewhat resembling the configu- |
ration found in the geomegnetic tall, is described; several proofs of the
drift-free property are given, including some that suggests that the pro-
perty of vanishing net drift might extend to non-adisbatic orbits. A genersl
criterion for identifying drift-free fieids is developed and a case of
motion in a nearly drift-free field is élso investigated. The theory is
applied to the plasma sheet in the earthls mognetotall and observational
evidence is presented suggesting that the magnetic field there indeeg

approaches a drift-free configuration,



Introduction

The purposerof this wofk is to examine a certain class of charged
partiéle motions in a magnétic'field. The mﬁfions'invol§e "magnetic
mirror" geoﬁetries in whichitwo independent periodic modes are péssible
- gyration around field llnes and "bounce” between mirror péints - with
two assoclated adi&batic invarients p and J .The filelds discussed
here have the additionsl property thaé the net guiding center drift,
 aversged over any bounce period, vanishes§ es will be seen, an analogous

property can also exist for non-adiabatic orbits.

An example of such a configuration is given in the next section: it
has & finite curl and therefore it is not cerfain that particle distri-
buticns can.be found which would providé the required cusrrent density ,-
in the absence of any net charge transport, However, self-consistenf
Plasma distribution functions certainly will exist for fields which
are not drift-free but mergly epproach a drift-free configuration: in
such cases the iﬂtegrated drift does not vanish but is merely small, so
that the field can carry a substantial Plasma density with only a modest
current density. An analogoué situetion exists in dynamo theory where

Cowling [ ;354] proved the impossibility of axisymmetrical dynamos,

yet Braginskil ['19§4 a, Ei] derived useful models by assuming a slight

deviation from axial symmetry.

A magnetic configuration which can be treated as s perturbed version

of a drift-free geometry apparently exists in the plasma sheet of the

earth's magnetotail, explaining why the total current carried by this



sheet is relatively small, considering the amount of plasma in the sheet.
The outer magnetosphere of Jupiter, as observed by Pioneer 10 [g@g@g et
als, &21&j] cen also be represented locally by & two-dimensional drift-free
field, to which a small component is added to preserve axial nesy-gymmetry,
so that it, 00, qualifies as s nearly drift-free configuration. The field
in Jupiter's outer magnetosphere might also be approximating an axisymm-
etric drift-free geometry but, although such geometries are investigated

in what follows, i£ 1s not known whether they actually exist.

A Simple Example

Consider a two-dimensional magnetic field of s form which is frequently

used in models of the magnetotail plasma sheet

Joo
i

B(2)% 4+ B 2 (1)

A

where

s
]

constant (2)

Field lines of this configuration, in any plane of constant ¥y and for
the case where B = Az, are glven in Figure (1) » which also depicts
(schematically) the projection of the orbit of s particle undergoing
guiding center motion, One may now ask, does such sn orbit undergo a slow

drift in the y direction, orthogenally to the Plane of the figure?

This problem is easily handled by the mathematical device described

below, although more direct proofs also exist and will be presented.



Suppose that an electric field

E = ByY (3)

exists across the magnetic fielde(An electric fieid brobably does exist

across the plesma sheet, so that 1f equation (1) is assumed to represent
a model of the magnetotail; equation (3) should probably also be assumed;
this, hOWever 1s not relevant to the present calculetion, in which the

-electric field is merely e mathematical devices) Let vy be the bounce-
averaged magnetic drift velocity of the given particle in the y direction.
and let g be its electric charge; the particle then will increase its

kinetic energy W at the rate q Ey v, Ber unit time,

However, 1if the problem is transformed into a frame mov1ng with the

uniform velocity

u = E(EO/BZJ (&)

then in the non~relstivistic approximation the electric field vanishés.
If v, remains unchanged by the transformation (see below) tﬁen in the
moving frame no energy gain is possible: this can only be reconciled
with the previous assumption if Vy = 0, lee. the particle's guiding

center "wobbles" around the guiding field line with no net drift,

To see whether vy 18 conserved one should note that to the lowest
relativistic order the magnetic field is not changed by the transformstion

to the moving frame and therefore any portions of ?y ¥hich depend on



B alone will also transform unchanged. In eddition vy will contain some
terms involving the electric field [Northrog, 1963, eqe 117 | . The
sbove argument then states that v? = 0 for any finite EO and it is
plausible to assume (although this is not a rigorous proof) that the

same also holds in the limit E0 = 0, in which case the megnetic field

ig Indeed drift=free,

If this spproach is accepted one .obtalins fﬁo edditional insights
imto this type of motion, First, there is no need to assume that the motion
is adisbatic: the same conclusions should slso be velid for non-adiebetic
motion, as long as vy is suitgbly defined. An exception occurs in the

1imit B_= 0, vhen (4) can no longer be used; indeed, in this limit mean-

dering modes of motion exist‘[Sonnerup, 1971] which have Tinite vy »

Nearly Drift«Free Fields

A second edventage of the above approach is that it allowe one +o estimate

vy In scme cases in which the geometry is only spproximately drift-free,.

Suppose Bz is not constant but varies slowly with x ; then the
preceding srgument no longer holds, since u 1is no longer a uniform

velocity. Assume now
B (0) = 0 ()

(as in the field in Fige. 1) and coneider the adlabatic motion of a charged
particle in the plane z = 0 , The electric drift will earry such a

pafticle in the X direction and due to congervation of the magnetic



moment p the particle's kinetic energy W will change with x at

the rate

W/ DX = uf'bBZ/’bx (6)

By previous arguments the rate with which W changes in time equals
q EO v:yr and it can also be found by multipl;y‘ing (6-) with the electric

drift velocity ,EO/BZ , giving

vy = (u/qu)"aBZ/’aX_ | (7)

This can &lsc be wiritten as -

- 1
vy—zng/Lx | (8)

where v 1s the particle’s veloclty, Rg ite gyration radius and LX
the scale length of the variation of 1:‘5Z « By way of comparison, the
Instentaneous guiding center drift velocity is of the order of v Rg/L s

where L 1is the much smaller scale of veriation of the total field.

The derivetion of vy for adisbatic particles not confined to
the equetorial plane is much more difficult and requires the bounce-

averaged Hamiltonian K(of, P, u, J),discussed later on.

Alternative Proofs

Consider Newton's equations of motion for a particle of charge g
and mass  m in the field of (1). The x component of the acceleration

is



and it integrates to

=
il

@B, {y -y )/n |  (20)

If the motion in % is pefiodic, a8 happens in the adiebatic case,
y will also vary in a periodic fashion. Even if the motion ig non-
adisbatic but x varies in a periodic or slmost periodic fashion,
the same property will hold true for y and no net drift will occur,
showing that the motion is drift-free. As before, the argument cannot
be used in the limit B, =0 » since X vanishes in that case, and as
has alreedy been noted, the motion in that limit is indeed not drift-

free,

A more conventionsl proof of the drift-free character of adisbetic
motion in the field (1) inmvolves the averaging of the instantaneous
guiding center drift over a bounce perlod. The calculation is lengthy
and 1s therefore given in the appendix; it is assumed there that the
magnetic configuration possesses mirror symmetry with respect to the
Plane z = 0 but, as is shown in whet follows, this requirement is

not, ezsentisl, .

The Averageld Hamiltonilan

A powerful tool for treating motions in a magnetic mirror geometry is
Pprovided by the bounce-averaged Hemiltonian X( o, P, 4, J), introduced

by Northrop and Teller [1&@0] » It5s use represents a second averaging ,




over the perlodicity of the mirroring motion, in addition to the

gyration avergging which leads to the guiding center theory.

Iet (ol,B) ve Euler potentials of the magnetic field {e.g.

review by Stern [].QTO] ) end let a particle move in this field and
conserve the two lowest adiab.atic inveriants t and J . In the absence
. of electric fields the Hamiitonia.ﬁ K( O(,P, W, J) for the aversged

motion then equals the particle's kinetic energy W .

Attention will be confined to cases in which, due to some symmetry,
K does not depend on ? - in particular, either to 2-dimensional
fields where |

B=Blx,2) 5 B=0; P=y

or to axielly symmetric fields where (using cylindrical coordinstes i 3
z end ¥ ) |
B=8(f2) ;5 By =0 ; P=Y

The drift velocity {combining gradient and curvature drifts) then
parallels the direction of VP and its average value can be found by one

of Hamilton's equations of motion

P> = (ofe) Di/Pk (11)

In particular, if K 1s independent of both & and F’ , the average
drift in the direction of VP vanlshes and the geometry will be drift-

free. This is & general condition for drift-free geometries but it does



constitute a useful criterion for identifying such flelds, since the

expliclt form of K is Qifficult to derive [e.g. Chen and Stern, wp] .

We therefore proceed to develop an elternative criterionm.

The Euler potentials are relasted to B ‘through

p = Vol % v? (12)

Let 1t be first assumed (an assumption which will later be removed.)
that © has mirror symmetry with respect to the plane 2z = 0 » lee,

for a 2-dimensional Field

Alx, z) = of{x, -z) (13-a)

and for an exlsymmetric field

oA, z)= (Y, -2) (13-v)

If & particle guided by the field line (X, P) of this field has
\@/ , it
kinetic energy W Yadlsbatic invariants (u, J) ani¥ie reflected at

zZ =% , then
m z

m
5 = (4/m) (ew)/2 S (-2 (25/22)| @z ()
o oA
where Bm = B(%m,ﬂ( }e The last equation implies that a function f(zm,ﬂ()
exists such that
-1/2
JW = f(zm, o« ) (15)

The magnetic moment H , on the other hand, satisfies
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W = B = Bz, &) (16)

Elimingtion of. zﬁ between therlasf tﬁo_equations implicitely gives
the functionel form of :W(ol, u, J).WhiC£j in the absence of electric
fields, equals the Hami:_l.toni'-a.n K of (11). If W is independent of

A , this means that such an elimination rémofes: A as well, which
will only happen if the right hénd exXpressions depend on each other,

lie.

e, o) = FlBlz,00)) | (17)

This 1s easler to express if (14) is transformed to a form in which

the field intensity B becomes the integration variasble, namely

B

i | ) . , . }
e, B ) = S | (l—B/BmJl/2 'Ds/fBBL ® = o) (18)

Beq(a()

Here B_ q = B(z=0,0{) is the equatorisl field intensity on the field
line with the given value of o and the last equality, involvihg some
function G independent of & , must hold if the field is to be drift-

free,

A simple extension of the arguments of the section dealing with
nearly drift-free fields shows that Beq may not depend on of because
if such g dependence existed, then in the limit J —» 0 & particle
would experience a net drift. In that limit a particle 1s confined to

the plane z‘= O : assuming an electric field

E = E, VP (19)
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it 1s found that the electric drift of such a particle would be in' the
direction of Vel , If Beq were allowed to vary with ol  then the
particle's energy would change in the coﬁrse of its electric drift due
to the conversetion of 4 énd,‘as outlined earlier, this would lmply

& net megnetlic drift In the direction of V‘F s

The condition that I is independemt of & thus reduces to the

requirement that s/OB at constant ol depends on B alone ~ i.e.

‘s = 5(B) (20)

Another way of expressing this relsationship would be in the form of

g Jacoblen

(s, B)/"J(ql, Q) = O (21)

where (ql, a,) equals on (x, z) or (2, 2) depending on the geometry.
In the cagses discusged here both = and B can be expressed iIn terms
of the Euler potential ol and its derivatives and (21) then reduces

to & rather complicated integro-differential equation.

In gll this the requirement of symmetry expressed by equations (13)
vs Provided (5) holds

can be waived® The reasoning behind this is outlined below: 1t can be

réadily expregged in conventlonsl mathematicel terms but deoing so has

little reml effect beyond lengthening the presentation.

Suppose that the symmetry condition holds and consider two points
P, = (x, 2) and B, = (x, ~2) in a two~dimensionsl field, symmetricelly

located on the same field line &b equal distances from the plene z =0



(for axial symmetry replace x everyvwhere by $ ). One now resdily
finds (e.g. from equations (A-l) and (A-e) in the appendix) that both

the curvature drift a.nd the gradient drift at P and at P‘ are the .
same. By extension it can also be shown that the average drift of either
kind e:qperienced by the partiecle a.long the portion of ite ‘guiding field
line sbove =0 1s the same as the corresponding aversge drift below

zZ =0 o B8ince the aversge gradient drift in eny period cancels the average
curvature drift, it also follows that g similear cancellation holds just
for the portion of the orbit above z = 0 and Just for the portion below
z =0, Thus, 1f one takes two different field line shapes satisfying (1),
(2) and (5), and splices them together at z = 0, the motion in the

resulting field will still be drift-free s 88 has been clsimed,

In the case of the field of (1) mnd (2) it is possible to choose
of = xB, - SBxdz (22)

¥

and calculation then shows that both B and = depend on 2 alone, the

(23)

n
g

elimination of which leads to the condition (20), Analytic examples or

even existence proofs for the axlally symmetric case are not known,

Application t o the Plasma Sheet

The form of the magnetic field given in equation (1) and in particular

the configuration shown in Figure 21 resemble in many wey the magnetic
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field cbserved in the earth's tail, in the plasma sheet region. In
that reglon the value of BZ gra.dually decreases from sbout Ly mt
PO R, t0 0.5 7 at 70 Ry [Beha.nnon, 1970, beble on p. 5L ; Bowling
and Wolf, ;2'&] , while ’DBX/'BZ L y/Re at a distance of 20 R, .

The preceding theory suggests that the mean ‘velocity vy of charged
particles across the plasmé gheet is relatively small. If the current
density observed in the tall cen be entirely attributed to the mean drift
of i:a.rticles - & polnt examined separstely later on - then the megnitude

of the tall current can be used to estimate v, 1in the following way.

¥
At a distance of 20 Re the change in Bx across the plasms sheet
amountts to gbout 20 ¥ , representing & current pf about 105 amperes for
each Re of plasma sheet length. Assuming that the current is carried
mainly by protons (which are considerably ‘more energetic than electrons
and therefore drift more rapidly) and teking the plasma density in the
middle of the sheet ass 0.5 protons/cm3 over g width of 6 R, , one
finds that in order to maintain the observed current, the protons must

move with an average cross-sheet velocity
vy ~ 5.l3 km/sec

A very rough theoretical estimate of what Vy ouéht to be is
cbtained from eq. (B) , which assumes protons to be adisbatic and
equatoriale. If a typical plasma sheet proton has an energy of 2 kev,
one finds v &~ 620 km/sec, R, =~ 1/3 R, (in a field of 3y) vhile the

work of Behannon Elﬂﬂ] Buggests Lx = 15 Ry > leading to

vy ad 609 k.RI/SEC
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The agreement obtained here should only be considered as qualitative,
for at least two reasons. First, the conditions for which (8) has been
derived are not generslly met and secondly, we have ignored the effects

due to density veriations in a diamsgnetic plasma.

Concerning the second point it should be noted that the plasma sheet
current density J i1s contributed not only by the drift velocity VY
of charged particles but alsoc by the variatlion in the density M of

megnetic mome‘nt. The latter contribution is called the magnetization
current density [e.g. Iﬂ_r_xgn;i' re, lgéé]a.nd equé_ls _ ny . .

In & strictly drift-free configurstion of the type discussed here,
if the plia.sma density N does not vary with x then VXM does
not contribute to the totaj. current, for the following reason , Assume )
that the plasma sheet is bounded gt z = + Zp by plasma-free regions
(Figure 2} If V XM 18 nov integrated over a rectangular Cross-
‘sectional ares of the sheet, bounded by z = * 2y {2, >20), x=x
end x = X, , then the integrel equals the total magnetization current
through the given é.ree.. Converting the integral into a contour integral
of M around the‘a.rea, it is seen that as long &s no x dependence

exiets, the result vanishes,

Even if N does not depend on x , however, a wesk dependence of
B, on x (as was assumed here) causes a non-vanlshing total magneti-
zation current, since the contributions of the segments with x = X,

and x = *, to the comtour integral then no longer cancel each other.

To the lowest order of epproximstion the result turns out to be propor.-
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tional to faBz/'ax ; in a similar wey, the current conducted by
particle drifts is 8lso proportionsl to ’}Bz,/ "x , which suggests
that in nearly drift-free geametries the comtributions of both these

mechenisms to J are roughly of the game order.

It 1s interesting to compare these results to the work of Bird

and Beard [lﬂg_] who computed numerically the combribubions to 4
from the curvature drift current, the gredient drift currenmt and the
magnetlzation current, In a model field representing the magnetospheric
toil (Figure 1 in their paper). As expected the first two sources of
current tend to have opposite effects; the megnetization current has

-a.n apprecisble effect on the dependence of d on z, but its
contribution to the totel current is small end the total current density

from 81l sources is likewice snsll,

One also should be careful here to note (as was pointed out by one
Of the referees) that the guiding center approximstion cannot always
be assumed to hold. The mean energy of plasme sheet protons near z = 0
at 18 R, peaks between 2 and 5 kev [g_gg_g et al., }ﬂ] » Taking
53 kev as & typical value of the energy at 30 Re where B, = 2y , we
find a gyration radius of about 0.6 R, « On the other hand, if

fan/q =4 y/R, , the scale of field variation is about

B, / (BB,/Bz2) ~ 05 R,

This suggests that near the mid-plane of the plasma sheet many of the
protons may be moving in non-adisbatic orbits. The preceding theory
suggests that the motion of such Protons, too, is nearly drift-free s but

for more quantitstive conclusions their orbits must be examined numeri-
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cally, as has been done in the work of Pudovkin and Tsyganenko [19?31'.

- Numerical work can also clarify the transition from the drift-free mode

to the meandering mode of Somnerup [1971] which, as vas noted, is not
drift free. '
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Appendix

For completeness, the vanishing of the mean arift velocity in the field
of eqs (1) is derived here by straightforvard integration. The gradient

and curvature drifts sre

v, = (v2ws?) 3xvs = - (v,2/2w) (B2/8°) @B faz } (A~1)

1l

-(v,%/wB?) B x [gx(vx;a_)]

i

(v,2/a) (82/8°) aBfaz § (a-2)

Assuming that the particle oscillates between mirror points with a

reriod T , the mean drift velocity is
<y> = (4/7) f(a‘r)w dt (a-3)

vwhere the integration extends from z = 0 to the mirror point and ( )av
implies averaging over a gyration period. It will be found convenient
to use as integration varisble the field infensity B observed by the

particle and to express eq. (A-3) as

-

; B
<I> = W) [T G, @t ()
B

Z

To evaluate dB/dt two unit vectors are introduced, ﬁ aligned with

B and N orthogonal to in in the (x, z) plane :

E = 1 (B, 2 + B, %) (a-5)
§ = 32 (5 ¢ +35_ %
i = “B, x +3_32) (A-6)



This gives

' N
2 = 3@ 8 +8 N . (a=7)
= z = Tx - -
Using the z coordinate to measure the particle's progress along its

gulding field line one gete

dB/dt' = (aB/az){daz/at) = '(BX/B) de/az ‘(go_%) (4-8)
by (4~7)
.!'2 = 31 B, v, + B _v,) (4~9)

where va is the velocity component along N « Averaged over a guiding

center gyration, to lowest order

(Vn)a.v = 0 ' (4-10)

and therefore

(aB/at) e = (v, B _B/B%) aB_/az (A-11)

Also, 1f the rapid gyration around the gulding center is averaged out s
then (jﬁ-)av of equation (A-%) simply becomes the combined drift velocity
contributed by (A-1) and (a-2)

(v),, = & /az (238%™t (2 B2 vZ - B2vS (A-12)

Dencting by Bm the field intensity at the mirror point, one finds

from the conservation of the megnetic moment



- 19 -

v o= (/)

(a-13)
AR CRRLLR)

Finally, if (4-11) to (A-13) are substituted in (A-4), the resulting

expresslon has the form

Bn 2823 -8B - B3
Z m 4

<y> = comst. J 4B (a-14)
BZ (B=. Bi)l/e (Bm - B)l/E BZ

The constant appearing'here comteins T, @/B, v and ZE&z 3 the
derivative de/dz cancels out while Bx itself is expressed in
terms of B , as in the first factor in the denomingtor. It may then-
be shown that the integral vanishea, by dividing it into two parts and
using integration by parts to show that they cancel. It follows that

the mean gulding cemter drift vanishes, as has been claimed.



Capticocn 5 to Figures

Figure 1 - Field lines in a drift-free magnetic field, with the

projection of a trapped orbit schematically shown.

Figure 2 + =~ Integration comtour used in showing that in the absence
of an x-dependence of plasma density and magnetic field,
the contribution of the magnetization current to the
total currenmt in a drift-free model of the plasma sheet

vanishes,



- 201 -

References

Bame, Sede, JoR. Asbridge, H.E. Felthausei”;, E.W, Hones and I.B. Strong,

Characteristics of the plasma sheet in the earth's magunetotail,

e Geophys. Res. 72, '_1_13-129,,196'7.

Behannon, K.W., .Geométry of the geomsgnetic tail, J, Geophys. Rese 75,

T43-753, 1970.

Bird, M.K. and D.B. Beard, Self consistent description of the magnetotail

current system, J. Geophys. Res., 77, 4864-4866, 1972,

Bowling, S.B. and Re.A. Wolf, The motion and msgnetic structure of the

plasma sheet near 30 R,, Planet. Space Sci. 22, 673-686, 197k.

Braginskii, S.I., Self excitation of a magnetic field during the motion of
a highly conducting fluid, JETP L7, 1084-98, 196ka ; translated in

Soviet Physics (JETP) 20, T26-735, 1965,

Braginskii, S.I., Theory of the hydromagnetic dynamo, JETP 47, 2178-2183,

196kb; translated in Soviet Physics (JETP) 20, 1462-1471, 1965.

Chen, AeJ. and D.P. Stern, Adisbatic Hamiltonian of charged particle motion

in 8 dipole field, J. Geophys. Res. 80, 690-693, 1975.

Cowling, ToG., The magnetic field of sunspots, Month. Not. Roy. Astr.

Soce 9, 39-48, 193k,



- 22 -

Longmire, CeL., Elementary Plasma Physics, Interscience (John Wiley and

Sons), 1963,

Northrop, TeG., The Adiebatic Motlon of Charged Particles, Interscicnce

(John Wiley end Soms), 1963.

i

Northrop, T.C. and E. Teller, Stability of the adiabatic motion of charged

particles in the earth's field, Phys. Rev. 117, 210-225, 1960,

Pudovkin, M.I. and N.A. Tsyganenko, Particle motions and eurrents in the

neutral sheet of the magnetospheric tail, Planet, Space Sci. 21,

Smith, E-Jc, Lo Da;ViS, Jr._, DeEeJones', PaJo Coleman, D.Si COlburn, P. Dy'al,
CePo Somnett and A.M.A. Frandsen, The planctary magnetic field and

magnetosphere of Jupiter: Pioneer 10, J. Geophys. Res. 19, 3501-3513,

197k,

Sonnerup, B.U, &, Adiabatic particle orbits in a megnetic null sheet,

Jo Geophys. Res. 76, 8211-8202, 1971,

Stern, DeP., Euler potentials, Amers J. Physe. 38, hok-501, 1970,







Figure 2



